Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(4): 1049-1063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480900

RESUMO

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Constrição , Óxido Nítrico Sintase/metabolismo
2.
Nat Microbiol ; 8(4): 695-710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823286

RESUMO

Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.


Assuntos
Bacteriófagos , Micobacteriófagos , Mycobacterium , Micobacteriófagos/genética , Mycobacterium smegmatis/genética
3.
Nat Commun ; 12(1): 5429, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521822

RESUMO

Bacillus subtilis is a model gram-positive bacterium, commonly used to explore questions across bacterial cell biology and for industrial uses. To enable greater understanding and control of proteins in B. subtilis, here we report broad and efficient genetic code expansion in B. subtilis by incorporating 20 distinct non-standard amino acids within proteins using 3 different families of genetic code expansion systems and two choices of codons. We use these systems to achieve click-labelling, photo-crosslinking, and translational titration. These tools allow us to demonstrate differences between E. coli and B. subtilis stop codon suppression, validate a predicted protein-protein binding interface, and begin to interrogate properties underlying bacterial cytokinesis by precisely modulating cell division dynamics in vivo. We expect that the establishment of this simple and easily accessible chemical biology system in B. subtilis will help uncover an abundance of biological insights and aid genetic code expansion in other organisms.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Código Genético , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Códon , Citocinese/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Ligação Proteica , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Nat Microbiol ; 6(5): 553-562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737746

RESUMO

Although many components of the cell division machinery in bacteria have been identified1,2, the mechanisms by which they work together to divide the cell remain poorly understood. Key among these components is the tubulin FtsZ, which forms a Z ring at the midcell. FtsZ recruits the other cell division proteins, collectively called the divisome, and the Z ring constricts as the cell divides. We applied live-cell single-molecule imaging to describe the dynamics of the divisome in detail, and to evaluate the individual roles of FtsZ-binding proteins (ZBPs), specifically FtsA and the ZBPs EzrA, SepF and ZapA, in cytokinesis. We show that the divisome comprises two subcomplexes that move differently: stationary ZBPs that transiently bind to treadmilling FtsZ filaments, and a moving complex that includes cell wall synthases. Our imaging analyses reveal that ZBPs bundle FtsZ filaments together and condense them into Z rings, and that this condensation is necessary for cytokinesis.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citocinese , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Ligação Proteica , Imagem Individual de Molécula
5.
Nat Commun ; 12(1): 609, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504807

RESUMO

The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Enzimas/metabolismo , Modelos Biológicos , Peptidoglicano/biossíntese , Imagem Individual de Molécula
6.
PLoS Genet ; 14(10): e1007726, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30335755

RESUMO

Cell elongation in rod-shaped bacteria is mediated by the Rod system, a conserved morphogenic complex that spatially controls cell wall assembly by the glycan polymerase RodA and crosslinking enzyme PBP2. Using Escherichia coli as a model system, we identified a PBP2 variant that promotes Rod system function when essential accessory components of the machinery are inactivated. This PBP2 variant hyperactivates cell wall synthesis in vivo and stimulates the activity of RodA-PBP2 complexes in vitro. Cells with the activated synthase also exhibited enhanced polymerization of the actin-like MreB component of the Rod system. Our results define an activation pathway governing Rod system function in which PBP2 conformation plays a central role in stimulating both glycan polymerization by its partner RodA and the formation of cytoskeletal filaments of MreB to orient cell wall assembly. In light of these results, previously isolated mutations that activate cytokinesis suggest that an analogous pathway may also control cell wall synthesis by the division machinery.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Actinas/metabolismo , Proteínas de Bactérias/genética , Ciclo Celular , Parede Celular/metabolismo , Citocinese/fisiologia , Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Morfogênese , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/metabolismo , Polimerização , Polissacarídeos/biossíntese
7.
Science ; 355(6326): 739-743, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209898

RESUMO

The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Citocinese
8.
Appl Environ Microbiol ; 81(24): 8414-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431965

RESUMO

As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Interações Microbianas/genética , Polissacarídeos Bacterianos/biossíntese , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fenótipo , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA